Image Labeling

Image Labeling

Machine Learning

With ML Kit's image labeling APIs, you can recognize entities in an image without having to provide any additional contextual metadata, using either an on-device API or a cloud-based API.

Visit API

📚 Documentation & Examples

Everything you need to integrate with Image Labeling

🚀 Quick Start Examples

Image Labeling Javascript Examplejavascript
// Image Labeling API Example
const response = await fetch('https://firebase.google.com/docs/ml-kit/label-images', {
    method: 'GET',
    headers: {
        'Content-Type': 'application/json'
    }
});

const data = await response.json();
console.log(data);

Firebase ML Kit - Label Images API Examples in JavaScript

Firebase ML Kit is a powerful tool for machine learning, allowing developers to easily integrate machine learning technologies into their applications. With ML Kit, developers can train models to detect and recognize objects in images, recognize text in images, and many other tasks. In this blog post, we will explore the Label Images API of ML Kit and provide some JavaScript code examples for using it.

Label Images API Overview

The Label Images API is part of Firebase ML Kit's image recognition capabilities. It allows developers to detect and classify objects within an image. Once an object is detected, the API provides information about the object, such as type and the location within the image.

The Label Images API is powered by Google Cloud Vision, which provides machine learning models that have been trained on millions of images. As a result, the Label Images API is able to detect and classify a wide range of objects with high accuracy.

Code Examples

Initializing Firebase

To use the Label Images API, you will need to initialize Firebase in your JavaScript project. Here's an example of how to do that:

const firebaseConfig = {
  // Your Firebase configuration goes here
};
firebase.initializeApp(firebaseConfig);

Loading an Image

Before you can use the Label Images API to classify an image, you will need to load the image into your project. Here's an example of how to do that using the HTML5 File API:

const fileInput = document.querySelector('input[type="file"]');
const img = new Image();

fileInput.addEventListener('change', (event) => {
  const file = event.target.files[0];
  const reader = new FileReader();
  
  reader.onload = (readerEvent) => {
    img.src = readerEvent.target.result;
  };
  
  reader.readAsDataURL(file);
});

Detecting Labels in an Image

Once you have loaded an image into your project, you can use the Label Images API to detect and classify objects within the image. Here's an example of how to do that:

const vision = firebase.vision();
const image = new FirebaseVisionImageFromImage(img);
const labeler = vision.cloudImageLabeler();

labeler.processImage(image)
  .then((labels) => {
    labels.forEach((label) => {
      // Do something with the label data
    });
  })
  .catch((error) => {
    console.error(error);
  });

In this example, we first create a FirebaseVisionImage object from the loaded image, and then create a CloudImageLabeler using Firebase ML Kit's vision() method. We then pass the image to the labeler's processImage() method, which returns a Promise that resolves to an array of Label objects. We can then iterate over the array of Label objects to access information about each detected object.

Conclusion

In this blog post, we explored the Label Images API of Firebase ML Kit and provided some code examples for using it in a JavaScript project. With the Label Images API, developers can easily detect and classify objects within an image, making it a powerful tool for machine learning applications.

📊 30-Day Uptime History

Daily uptime tracking showing online vs offline minutes

May 31Jun 2Jun 4Jun 6Jun 8Jun 10Jun 12Jun 14Jun 16Jun 18Jun 20Jun 22Jun 24Jun 26Jun 2904008001440Minutes
Online
Offline

Related APIs in Machine Learning